US 20220004219A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0004219 A1

Cerny et al.

43) Pub. Date: Jan. 6, 2022

(54)

(71)

(72)

@

(22)

(63)

BACKWARD COMPATIBILITY THROUGH
USE OF SPOOF CLOCK AND FINE GRAIN
FREQUENCY CONTROL

Applicant: Sony Interactive Entertainment LLC,
San Mateo, CA (US)

Inventors: Mark Evan Cerny, Los Angeles, CA
(US); David Simpson, Los Angeles,
CA (US)

Appl. No.: 17/475,164
Filed: Sep. 14, 2021

Related U.S. Application Data

Continuation of application No. 16/740,271, filed on
Jan. 10, 2020, now Pat. No. 11,119,528, which is a
continuation of application No. 15/701,736, filed on
Sep. 12, 2017, now Pat. No. 10,534,395, which is a
continuation of application No. 14/627,988, filed on
Feb. 20, 2015, now Pat. No. 9,760,113.

200

Yes

h 4

Publication Classification

(51) Int. CL
GOGF 1/08 (2006.01)
GOGF 9/455 (2006.01)
GOGF 15/10 (2006.01)
GOGF 9/44 (2006.01)
(52) US.CL
CPC oo GOGF 1/08 (2013.01); GOGF 9/44
(2013.01); GOGF 15/10 (2013.01); GO6F
9/455 (2013.01)
(57) ABSTRACT

An application designed for the current version of a system
runs at a standard clock frequency of a current version of the
system. Running the application at the standard clock fre-
quency includes synchronizing operation of a processor of
the current version of the system with the standard clock
frequency. An application designed for a different version of
the system characterized by a different standard clock fre-
quency runs at a second clock frequency that is different than
the standard clock frequency. Running the application at the
second clock frequency includes synchronizing operation of
the processor of the current version of the system with the
second clock frequency.

201 Start

210 Application
designed for the
current console?

220 Run system at
standard clock
frequency.

230 Determine clock
frequency for error-free
operation

A 4

222 cycle counter

A

reads standard clock

232 Run spoof clock at
clock frequency of prior
version of console

|

234 cycle counter
reads spoof clock

) 4

End

Patent Application Publication Jan. 6,2022 Sheet 1 of 2 US 2022/0004219 A1

451 00
APU 110
120
CPU
121 OS 190 //150
122 Application
! 152 i
124 Graphics API | 1o ;
CCc 125 Spoof Clock
GPU i CPUCLK || GPUCLK i
132 Hardware Modules 158
"| CACHE §
134 Shaders
136 Rasterizer Module 160
MASS
CCc || 135 Spoof Clock STORE
172
140 MEMORY NETWORK
142 GRAPHICS MEMORY INTERFACE
144 Render Targets 170
USER
145 Color Buffers INTERFACE
146 Depth Buffers 180
DISPLAY
147 Display Buffers
182
Rendered
Graphics

FIG. 1

Patent Application Publication Jan. 6,2022 Sheet 2 of 2 US 2022/0004219 A1

200
201 Start

210 Application
designed for the

Yes current console?
A
220 Run system at 230 Determine clock
standard clock frequency for error-free
frequency. operation
Y
222 cycle counter A

reads standard clock

232 Run spoof clock at
clock frequency of prior
version of console

h 4

234 cycle counter
reads spoof clock

A 4

>< End)

FIG. 2

US 2022/0004219 Al

BACKWARD COMPATIBILITY THROUGH
USE OF SPOOF CLOCK AND FINE GRAIN
FREQUENCY CONTROL

CLAIM OF PRIORITY

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/740,271, filed Jan. 10, 2020 to be
issued as U.S. Pat. No. 11,119,528. U.S. patent application
Ser. No. 16/740,271 is a continuation of U.S. patent appli-
cation Ser. No. 15/701,736 filed Sep. 12, 2017, now U.S.
Pat. No. 10,534,395, the entire contents of which are incor-
porated herein by reference. U.S. patent application Ser. No.
15/701,736 is a continuation of U.S. patent application Ser.
No. 14/627,988 filed Feb. 20, 2015, now U.S. Pat. No.
9,760,113, the entire contents of which are incorporated
herein by reference.

FIELD OF THE DISCLOSURE

[0002] Aspects of the present disclosure are related to
execution of a computer application on a computer system.
In particular, aspects of the present disclosure are related to
a system or a method that provides backward compatibility
for applications/titles designed for older versions of a com-
puter system.

BACKGROUND

[0003] Modern computer systems often use different pro-
cessors for different computing tasks. In addition to a central
processing unit (CPU), a modern computer may have a
graphics processing unit (GPU) dedicated to certain com-
putational tasks in a graphics pipeline, both being potentially
part of an accelerated processing unit (APU) that may
contain other units as well.

[0004] More powerful central processing units (CPUs),
graphic processing units (GPUs) and accelerated processing
units (APUs) may have higher latency, or latency charac-
teristics that differ from less powerful components. For
example, a more powerful GPU may have more stages in its
texture pipeline when compared to a less powerful GPU. In
such a case, the latency of this pipeline increases. In another
example, a more powerful APU may contain a .3 cache for
the CPU, compared to a less powerful APU that did not have
such a cache. In such a case, the memory latency charac-
teristics differ as the time needed to access data that misses
all caches increases for the more powerful APU, but average
latency will decrease for the more powerful APU.

[0005] The more powerful device and the less powerful
device may be able to perform the same processing (e.g.,
execution of program instructions on the CPU or various
programmatic and fixed function operations on the GPU),
but differences in latency of this processing may cause the
more powerful device to fail to be backwards compatible
with respect to the less powerful device. Similarly, there may
be differences in speed or throughput of the processing that
cause the more powerful device to fail to be backwards
compatible. For example, for certain types of processing, the
more powerful device may be able to perform more itera-
tions of the processing within the same time interval. Alter-
natively, the more powerful device could perform the pro-
cessing using different algorithms that result in behavior that
is faster or slower than the less powerful device, depending
on the circumstance.

Jan. 6, 2022

[0006] In the case of video game consoles, the operation
is typically at a set clock frequency, and the software
applications are tested for proper operation at this set
frequency. Sometimes, it is desirable to run applications
created for the original, less powerful console on a more
powerful console. This ability is often referred to as “back-
ward compatibility”. In such cases, it is desirable for the
more powerful device to be able to run the application
created for the less powerful device without detrimental
effects of differences in latency or processing speed.
[0007] It is within this context that aspects of the present
disclosure arise.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The teachings of the present disclosure can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0009] FIG. 1 is a block diagram illustrating a system that
may be configured at various operating frequencies in accor-
dance with aspects of the present disclosure.

[0010] FIG. 2 is a flow diagram illustrating an example of
a possible process flow in determining an operating fre-
quency for a system in accordance with aspects of the
present disclosure.

DESCRIPTION OF THE DRAWINGS

[0011] Although the following detailed description con-
tains many specific details for the purposes of illustration,
anyone of ordinary skill in the art will appreciate that many
variations and alterations to the following details are within
the scope of the invention. Accordingly, the exemplary
embodiments of the invention described below are set forth
without any loss of generality to, and without imposing
limitations upon, the claimed invention.

Introduction

[0012] Several methods may be used for running applica-
tions created for the less powerful console on the more
powerful console. In one example, the more powerful con-
sole may be set to run at the frequency of the original
console. At this frequency setting, the operation of the more
powerful console will vary based on the specific processing
being performed at any instant of time, and may be slower
or faster than the less powerful console due to the latency
(and other) characteristics of that specific processing being
performed. When the operation of the more powerful con-
sole is slower than the original console, many errors in the
application may arise due to the inability to meet real time
deadlines imposed by display timing, audio streamout or the
like.

[0013] In another example, the more powerful console
may be set to run at a much higher frequency than the
original console. Speed of operation will vary based on the
specifics of the processing being performed, but it will be
consistently higher than on the original console and thus real
time deadlines can be met successfully. However, many
errors in the application may arise due to the untested
consequences of such high speed operation. For example, in
a producer-consumer model, if the consumer of data oper-
ates at higher speed than originally anticipated, it may
attempt to access data before the data producer makes it
available, and although synchronization mechanisms may

US 2022/0004219 Al

exist they are unlikely to be tested under such conditions on
the original console. Alternatively, if the producer of the data
operates at higher speed than originally anticipated, it may
overwrite data still being used by the data consumer.

EMBODIMENTS

[0014] Embodiments of the present disclosure provide a
system and a method of setting a console (i.e., more pow-
erful console) to run at a higher frequency than a prior
version of the console (i.e., less powerful console). Ideally
the frequency of the more powerful console is set slightly
higher than the operating frequency of the original console,
as the speed of operation of the more powerful console
varies based on the specifics of the processing being per-
formed at any instant. With such configuration, the incidence
of errors may be minimized because the speed of operation
is not great enough to trigger the unintended consequences
of high speed operation, nor will it be low enough to fail to
meet real time deadlines.

[0015] Specifically, without the need to counter the effects
of differences in latency, throughput or other aspects of
processing, a more powerful console could be operated at
only two frequencies: a higher frequency for applications
created to run on the more powerful console, and the same
frequency as the original console for backwards compatibil-
ity (i.e., when running applications created for the original
console). But due to the need to counter the effects of
differences in latency, throughput, and other aspects of
processing, it is desirable to have fine grain control over the
frequency of operation, so that the more powerful console
can be run at frequencies slightly higher than the original
console. The exact frequency setting could be determined by
experimentation using both consoles and various software
applications, or the frequency setting could vary by appli-
cation, or the frequency setting could vary on a moment to
moment basis depending on the performance characteristics
of the application.

[0016] It is noted that the software application may have
access to a cycle counter, e.g., a counter of cycles of
operation of the CPU or GPU, or alternatively a counter that
increments at a slower rate, for example the counter may
increment every time the CPU or GPU has completed 16
clock cycles. As the frequency of the CPU and GPU is fixed
on the original console, the application may be relying on
the consistency of this timing. For example, the software
application may be making assumptions regarding the ratio
of clocks between CPU and GPU.

[0017] Alternatively, the application may be using the
GPU cycle counter to calculate the time to the next vertical
blanking interval and then modity the rendering operations
being performed so as to ensure that all rendering is com-
plete prior to the start of vertical blank.

[0018] When this same software application is run at a
higher frequency on the more powerful console, many errors
may arise from its use of the cycle counter. For example, as
at a higher frequency the number of cycles between vertical
blanking intervals would be greater, the calculation concern-
ing available time before the start of the next vertical
blanking interval would be incorrect, leading to improper
decisions as to what rendering is performed and potentially
fatal errors.

[0019] Therefore, aspects of the present disclosure also
provide a system and method of replacing the true cycle
counter with a spoof clock which returns a number that

Jan. 6, 2022

corresponds to the frequency of the less powerful console.
Whether reading the cycle counter returns the true cycle
count, or whether instead it returns the value of the spoof
clock, depends on the use case and would be configured by
the operating system. Embodiments of the present disclosure
provide a system configured to operate in two modes. The
first mode is a normal mode in which the system operates at
a normal frequency of operation, and the second mode is a
compatible mode in which the system operates on the
assumption of compatibility between the system and other
ones (e.g., old versions of the system). The system is
configured to be activated and operated in the normal mode.
However, when an application or a title originally designed
for the older versions of the system is run, the system may
be configured to switch to a suitable operating frequency for
the loaded application.

[0020] Turning now to FIG. 1, an illustrative example of
a computing system 100 configured to be operated at various
frequencies in accordance with aspects of the present dis-
closure is depicted. According to aspects of the present
disclosure, the system 100 may be an embedded system,
mobile phone, personal computer, tablet computer, portable
game device, workstation, game console, and the like.

[0021] The system may generally include a processor and
memory configured to implement aspects of the present
disclosure, e.g., by performing a method having features in
common with the method of FIG. 2, which is discussed
below. In the illustrated example, the processor is an accel-
erated processing unit 110 that includes a central processing
unit (CPU) 120, and a graphics processing unit (GPU) 130
on a single chip. In alternative implementations, the CPU
120 and GPU 130 may be implemented as separate hardware
components on separate chips. The system 100 may also
include memory 140. The memory 140 may optionally
include a main memory unit that is accessible to the CPU
120 and GPU 130, and portions of the main memory may
optionally include portions of the graphics memory 142. The
CPU 120 and GPU 130 may each include one or more
processor cores, e.g., a single core, two cores, four cores,
eight cores, or more. The CPU 120 and GPU 130 may be
configured to access one or more memory units using a data
bus 190, and, in some implementations, it may be useful for
the system 100 to include two or more different buses.

[0022] The memory 140 may include one or more memory
units in the form of integrated circuits that provides address-
able memory, e.g., RAM, DRAM, and the like. The memory
contains executable instructions configured to implement a
method of FIG. 2 upon execution for determining an oper-
ating frequency for the system. In addition, the graphics
memory 142 may temporarily store graphics resources,
graphics buffers, and other graphics data for a graphics
rendering pipeline. The graphics buffers may include, e.g.,
one or more vertex buffers for storing vertex parameter
values and one or more index buffers for storing vertex
indices. The graphics buffers may also include one or more
render targets 144, which may include both color buffers 145
and depth buffers 146 holding pixel/sample values computed
according to aspects of the present disclosure. In certain
implementations, the color buffers 145 and/or depth buffers
146 may be used to determine a final array of display pixel
color values to be stored in a display buffer 147, which may
make up a final rendered image intended for presentation on
a display. In certain implementations, the display buffer may
include a front buffer and one or more back buffers, and the

US 2022/0004219 Al

GPU 130 may be configured to scanout graphics frames
from the front buffer of the display buffer 147 for presen-
tation on a display 180.

[0023] The CPU 120 may be configured to execute CPU
code, which may include operating system 121 or an appli-
cation 122 utilizing rendered graphics (such as a video
game) and a corresponding graphics API 124 for issuing
draw commands or draw calls to programs implemented by
the GPU 130 based on the state of the application 122. The
CPU code may also implement physics simulations and
other functions. The CPU and GPU clocks 156, 156 may
be configured to allow the CPU and GPU to execute
instructions based on a clock rate that is different from a
standard clock rate of the system 100. By way of example,
and not by way of limitation, if the application 122 is for a
less powerful version of the system 100, the value of the
clock frequencies 156c¢, 156, may correspond to clock
frequencies of the less powerful version, or a slightly higher
frequency than that if there are issues arising from higher
latency in the system 100.

[0024] To support the rendering of graphics, the GPU 130
may execute shaders 134, which may include vertex shaders
and pixel shaders. The GPU may also execute other shader
programs, such as, e.g., geometry shaders, tessellation shad-
ers, compute shaders, and the like. The GPU 130 may also
include specialized hardware modules 132, which may
include one or more texture mapping units and/or other
hardware modules configured to implement operations at
one or more stages of a graphics pipeline. The shaders 134
and hardware modules 132 may interface with data in the
memory 140 and the buffers 144 at various stages in the
pipeline before the final pixel values are output to a display.
The shaders 134 and/or other programs configured to be
executed by the APU 110, CPU 120 and GPU 130 may be
stored as instructions in a non-transitory computer readable
medium. By way of example, and not by way of implemen-
tations, the GPU may implement a rasterizer module 136,
which may be configured to take multiple samples of
primitives for screen space pixels and invoke one or more
pixel shaders according to the nature of the samples.
[0025] The system 100 may also include well-known
support functions 150, which may communicate with other
components of the system, e.g., via the bus 190. Such
support functions may include, but are not limited to,
input/output (I/O) elements 152, one or more clocks, which
may include separate clocks 156, 156, for the CPU 120
and GPU 130, respectively, and a cache 158. The system 100
may optionally include a mass storage device 160 such as a
disk drive, CD-ROM drive, flash memory, tape drive, Blu-
ray drive, or the like to store programs and/or data. In one
example, the mass storage device 160 may receive a com-
puter readable medium 162 containing a legacy application
originally designed to run on a less powerful system. Alter-
natively, the legacy application 162 (or portions thereof)
may be stored in memory 140 or partly in the cache 158.
[0026] The device 100 may also include a display unit 180
to present rendered graphics 182 to a user and user interface
unit 170 to facilitate interaction between the system 100 and
auser. The display unit 180 may be in the form of a flat panel
display, cathode ray tube (CRT) screen, touch screen, head
mounted display (HMD) or other device that can display
text, numerals, graphical symbols, or images. The display
180 may display rendered graphics 182 processed in accor-
dance with various techniques described herein. The user

Jan. 6, 2022

interface 170 may contain one or more peripherals, such as
a keyboard, mouse, joystick, light pen, game controller,
touch screen, and/or other device that may be used in
conjunction with a graphical user interface (GUI). In certain
implementations, the state of the application 122 and the
underlying content of the graphics may be determined at
least in part by user input through the user interface 170,
e.g., in video gaming implementations where the application
122 includes a video game.

[0027] The system 100 may also include a network inter-
face 172 to enable the device to communicate with other
devices over a network. The network may be, e.g., a local
area network (LAN), a wide area network such as the
internet, a personal area network, such as a Bluetooth
network or other type of network. Various ones of the
components shown and described may be implemented in
hardware, software, or firmware, or some combination of
two or more of these.

[0028] According to aspects of the present disclosure, the
CPU 120 may include hardware components that implement
a cycle counter CC. to synchronize execution of CPU
operations. The GPU 130 may similarly include hardware
components that implement a cycle counter CC, to syn-
chronize execution of GPU operations. The cycle counters
CC, CCg read clock cycles from a clock, which may be a
corresponding standard clock 156¢, 156 or a corresponding
spoof clock 125, 135. According to aspects of the present
disclosure, when running applications written for the current
version of the system 100, the cycle counters CC, CC; may
be configured to read cycles from the standard clocks 156,
156; whereas when running applications written for a less
powerful version of the system, the cycle counters CC,
CC may be configured to read cycles from the spoof clocks
125, 135, which may be set to the standard operating
frequency of the less powerful version of the hardware.
[0029] FIG. 2 is a flow diagram illustrating an example of
a possible process flow in determining frequency of the
operation for a console in accordance with aspects of the
present disclosure, as implemented by the operating system
121, or other software or hardware mechanisms. At 201,
operation may start in a normal mode when an application
122 is loaded to run on the system 100. First, via an
examination of the software ID, software checksum, meta-
data associated with the software, media type, or other
mechanism, a determination is made if the application 122
is designed for this system or for the prior versions of the
system, as indicated at 210. When it is determined that the
loaded application is intended for the system 100, the system
may run at a normal frequency, as indicated at 220. For
example, the CPU 120 and GPU 130 may run at their normal
operating frequencies, respectively. In particular the cycle
counters CC ., CC; may read the corresponding clocks 156
and 156, as indicated at 222.

[0030] When the loaded application 122 is designed for a
less powerful version of the system 100, the system may
determine a clock frequency for error-free operation, as
indicated at 230. By way of example, and not by way of
limitation, the clocks 156, 156 may be set to run the CPU
120 and GPU 130 at slightly higher frequencies than the
corresponding clock frequencies in the less powerful sys-
tem. Alternatively, the clock frequencies 156, 156 ; may be
adjusted in real time such that as the speed of operation of
the system 100 varies based on the specifics of the process-
ing being performed at any instant, processing occurs at the

US 2022/0004219 Al

same speed or a slightly faster speed than the less powerful
system. The clock frequencies may be determined in a way
that takes into account effects of higher latency, throughput
and other aspects of processing with CPU 120 and/or GPU
130. The spoof clock frequencies 125, 135 are set to
correspond to the standard frequencies of CPU and GPU
operation of the less powerful system, as indicated at 232. In
particular the cycle counters CC., CC are configured read
the corresponding spoof clocks 125 and 135, as indicated at
234.

[0031] To give an example, the GPU of the prior version
of the system might run at a GPU clock of 500 MHz, and the
current system might run at a GPU clock 156 of 750 MHz.
The system would run with 156 set to 750 MHz when an
application is loaded that is designed only for the current
system. In this example, the cycle counter CC, would
correspond to the 750 MHz frequency (i.e., it is a true cycle
counter). When a legacy application (i.e., an application
designed for the prior version of the system) is loaded, the
system 100 may run at a frequency slightly higher than the
operating frequency of the prior system (e.g., with 156 set
to 505 MHz). In this backward compatible mode, the GPU
spoof clock 135 would be configured to run at 500 MHz, and
the cycle counter CC; would be derived from the spoof
clock, thus providing the expected value to the legacy
application.

[0032] The current system may differ from the prior
system in terms of latency characteristics, throughput, or
algorithms employed in computations, so while the results
of the computation may be the same, the speed of operation
of the console will vary based on the specifics of the
operations performed. As a result, when the loaded appli-
cation 122 is a legacy application, it may be desirable to set
the clocks 156, 156 to values determined by testing of the
specific application loaded, for example by running at the
higher clock frequency and reducing the effective clock
frequency incrementally until processing errors no longer
arise. It may also be desirable to dynamically adjust the
clocks 156, 156 based on the performance characteristics
of the application.

[0033] Aspects of the present disclosure overcome prob-
lems with backward compatibility that arise when programs
written for a less powerful system run on a more powerful
system. Adjusting the system clock rate of the more pow-
erful system accommodates for differences between the
devices. Basing readable cycle counters on a spoof clock in
place of the true clock allows correct operation of legacy
application code.

[0034] While the above is a complete description of the
preferred embodiment of the present invention, it is possible
to use various alternatives, modifications and equivalents.
Therefore, the scope of the present invention should be
determined not with reference to the above description but
should, instead, be determined with reference to the
appended claims, along with their full scope of equivalents.
Any feature described herein, whether preferred or not, may
be combined with any other feature described herein,
whether preferred or not. In the claims that follow, the
indefinite article “A”, or “An” refers to a quantity of one or
more of the item following the article, except where
expressly stated otherwise. The appended claims are not to
be interpreted as including means-plus-function limitations,
unless such a limitation is explicitly recited in a given claim
using the phrase “means for.”

Jan. 6, 2022

What is claimed is:

1. A method, comprising:

after it is determined whether an application loaded on a

current version of a system is for the current version of
the system or a less powerful version of the system,

a) running the application on a processor at a standard

clock frequency of a current version of the system
when the application is designed for the current version
of a system, wherein running the application at the
standard clock frequency includes synchronizing
operation of a processor of the current version of the
system with the standard clock frequency; and

b) running the application at a second clock frequency

when the application is designed for a different version
of the system, wherein the different version of the
system is characterized by a different standard clock
frequency, wherein the second clock frequency is dif-
ferent than the standard clock frequency, wherein run-
ning the application at the second clock frequency
includes synchronizing operation of the processor of
the current version of the system with the second clock
frequency.

2. The method of claim 1, wherein the second clock
frequency is higher than the different standard clock fre-
quency.

3. The method of claim 1, wherein b) includes setting the
second frequency based on the difference in latency or
latency characteristics between the current and different
versions of the system, differences in throughput or speed of
operation between the current and different versions of the
system, or differences between the current and different
versions of the system with regards to algorithms employed
in computations.

4. The method of claim 1, wherein the current version of
the system includes a software readable cycle counter, which
increments at the standard operating frequency of the dif-
ferent version of the system or a rate so close to it as to avoid
triggering errors in operation.

5. The method of claim 1, wherein the current version of
the system includes a software readable cycle counter,
wherein b) includes incrementing the cycle counter at the
standard operating frequency of the different version of the
system or a rate so close to it as to avoid triggering errors in
operation, and a) includes incrementing the cycle counter at
a different rate.

6. The method of claim 1, wherein a) includes setting the
second operating frequency to different values for different
applications.

7. The method of claim 1, wherein b) includes dynami-
cally setting the second operating frequency based on the
performance characteristics of the application currently run-
ning on the processor.

8. The method of claim 1, wherein b) further includes
determining the second operating frequency by taking into
account differences in latency or latency characteristics
between the current version and the different version of the
system.

9. The method of claim 1, wherein b) further includes
determining the second operating frequency by taking into
account differences in throughput between the current ver-
sion and the different version of the system.

10. The method of claim 1, wherein b) further includes
determining the second operating frequency by taking into

US 2022/0004219 Al

account differences between the current version and the
different version of the system with regards to algorithms
used in computations.

11. The method of claim 1, wherein the different version
of the system is a less powerful system than the current
version of the system.

12. The method of claim 1, wherein the current version of
the system includes a graphics processing unit (GPU) char-
acterized by more stages in a pipeline than a GPU in the
different version of the system.

13. The method of claim 1, wherein the current version of
the system includes an 1.3 cache and the different version of
the system does not include an L3 cache.

14. The method of claim 1, wherein the current version of
the system performs processing using a different algorithm
than the different version of the system.

15. The method of claim 1, wherein the processor of the
current version of the system is a central processing unit
(CPU).

16. The method of claim 1, wherein the processor of the
current version of the system is a graphics processing unit
(GPU).

17. The method of claim 1, wherein the second clock
frequency is less than the standard clock frequency.

18. The method of claim 1, wherein the second clock
frequency is greater than the standard clock frequency.

19. A system, comprising:

a processor;

a memory; and

processor executable instructions embodied in the

memory, the instructions being configured to imple-
ment a method upon execution by the processor, the
method comprising:

after it is determined whether an application loaded on a

current version of the system is for the current version
of the system or a less powerful version of the system,

a) running the application on a processor at a standard

clock frequency of a current version of the system
when the application is designed for the current version
of the system, wherein running the application at the
standard clock frequency includes synchronizing
operation of the processor with the standard clock
frequency; and

b) running the application at a second clock frequency

when the application is designed for a different version
of the system, wherein the different version of the
system is characterized by a different standard clock
frequency, wherein the second clock frequency is dif-
ferent than the standard clock frequency, wherein run-
ning the application at the second clock frequency
includes synchronizing operation of the processor with
the second clock frequency.

20. The system of claim 19, wherein the second clock
frequency is higher than the different standard clock fre-
quency.

21. The system of claim 19, wherein b) includes setting
the second frequency based on the difference in latency or
latency characteristics between the current and different
versions of the system, differences in throughput or speed of
operation between the current and different versions of the
system, or differences between the current and different
versions of the system with regards to algorithms employed
in computations.

Jan. 6, 2022

22. The system of claim 19, wherein the current version
of the system includes a software readable cycle counter,
which increments at the standard clock frequency of the
different version of the system or a rate so close to it as to
avoid triggering errors in operation.

23. The system of claim 19, wherein the current version
of the system includes a software readable cycle counter,
wherein b) includes incrementing the cycle counter at the
standard clock frequency of the different version of the
system or a rate so close to it as to avoid triggering errors in
operation, and b) includes incrementing the cycle counter at
a different rate.

24. The system of claim 19, wherein b) includes setting
the second clock frequency to different values for different
applications.

25. The system of claim 19, wherein b) includes dynami-
cally setting the second operating frequency based on the
performance characteristics of the application currently run-
ning on the processor.

26. The system of claim 19, wherein b) further includes
determining the second operating frequency by taking into
account differences in latency or latency characteristics
between the current version and the different version of the
system.

27. The system of claim 19, wherein b) further includes
determining the second operating frequency by taking into
account differences in throughput between the current ver-
sion and the different version of the system.

28. The system of claim 19, wherein b) further includes
determining the second operating frequency by taking into
account differences between the current version and the
different version of the system with regards to algorithms
used in computations.

29. The system of claim 19, wherein the different version
of the system is a less powerful system than the current
version of the system.

30. The system of claim 19, wherein the current version
of the system includes a graphics processing unit (GPU)
characterized by more stages in a pipeline than a GPU in the
different version of the system.

31. The system of claim 19, wherein the current version
of the system includes an [.3 cache and the different version
of the system does not include an L3 cache.

32. The system of claim 19, wherein the current version
of the system performs processing using a different algo-
rithm than the different version of the system.

33. The system of claim 19, wherein the processor of the
current version of the system is a central processing unit
(CPU).

34. The system of claim 19, wherein the processor of the
current version of the system is a graphics processing unit
(GPU).

35. The system of claim 19, wherein the second clock
frequency is less than the standard clock frequency.

36. The system of claim 19, wherein the second clock
frequency is greater than the standard clock frequency.

37. A non-transitory computer readable medium having
computer readable instructions embodied therein, the
instructions being configured to implement a method upon
execution by a processor, the method comprising:

after it is determined whether an application loaded on a

current version of a system is for the current version of
a system or a less powerful version of the system,

US 2022/0004219 Al Jan. 6, 2022

a) running the application on a processor at a standard
clock frequency of a current version of the system
when the application is designed for the current version
of the system, wherein running the application at the
standard clock frequency includes synchronizing
operation of the processor with the standard clock
frequency; and

b) running the application at a second clock frequency
when the application is designed for a different version
of the system, wherein the different version of the
system is characterized by a different standard clock
frequency, wherein the second clock frequency is dif-
ferent than the standard clock frequency of the current
version of the system, wherein running the application
at the second clock frequency includes synchronizing
operation of the GPU with the second clock frequency.

38. The non-transitory computer readable medium of

claim 37, wherein the second clock frequency is less than the
standard clock frequency.

39. The non-transitory computer readable medium of

claim 37, wherein the second clock frequency is greater than
the standard clock frequency.

#* #* #* #* #*

